从AI的偏见向公正的转变_工作流管理_工作流软件_深圳市和丰软件技术有限公司【知名】

13544009511
我们做过什么

从AI的偏见向公正的转变

发布日期:2021-01-11 浏览次数:

今年,我们还看到了一些重要的变化,从只关注技术层面的人工智能“去偏见”,转向对司法公正的实质性关注。
 
许多令人不安的事件在一定程度上推动了这一点。
 
例如,密歇根州的前州长里克·斯奈德(Rick Snyder)是一位技术主管,同时也是弗林特水危机的负责人,他决定在全州范围内安装一个自动化决策系统,称为MiDAS。它旨在自动标记涉嫌福利欺诈的工人。为了削减成本,该州安装了MiDAS并解雇了整个欺诈检测部门。但事实证明,93%的时间MiDAS系统都会出错。错误地指控了40,000多名居民,从而引发了许多破产乃至自杀事件。但是,MiDAS只是紧缩政策的一部分,这些政策旨在让穷人成为替罪羊。
 
AI Now政策总监Rashida Richardson负责一个案例研究警察日常工作与预测性警务软件之间联系。她和她的团队发现,在美国各地的许多警察部门中,预测性警务系统可能会使用来自种族主义和腐败的警务记录。
 
显然,在这种情况下纠正偏差与删除数据集中的变量无关,需要改变的是警察制作数据的做法。人权数据分析小组的研究人员克里斯蒂安·卢姆(Kristian Lum)在她开创性工作“算法如何放大警务中的歧视性”问题中也表明了这一点。
 
最近,凯特·克劳福德(Kate Crawford)和AI Now艺术家研究员特雷弗·帕格伦(Trevor Paglen)还在他们的Training Humans展览中探讨了分类政治,这是首个关注创建机器学习系统的训练数据的大型艺术展览。这个项目从1963年Woody Bledsoe的第一个实验,到最著名和使用最广泛的基准集,如Wilded Labeled Faces和ImageNet,回顾了AI训练集的历史和逻辑。
 
今年9月,数百万人上传了他们的照片来看他们将如何被ImageNet分类。这是一个具有重大意义的问题。ImageNet是规范的对象识别数据集。它在塑造AI产业方面做得比其他公司都多。
 
虽然ImageNet的一些类别很奇怪,甚至很有趣,但数据集也充满了极具问题的分类,其中许多是种族主义者和厌恶妇女主义者(misogynist)。Imagenet Roulette提供了一个界面,使人们可以查看AI系统如何对它们进行分类。克劳福德(Crawford)和帕格伦(Paglen)发表了一篇调查文章,展示了他们如何在多个基准训练集上揭开它们的面纱,以揭示其体系结构。
 
这也是为什么艺术和研究结合在一起有时比单独时更有影响力的一个原因,这让我们考虑由谁来定义我们所处的类别,以及会产生什么后果。
 

粤公网安备 44030502004911号