OSNet的另一个关键特性是轻量级_工作流管理_工作流软件_深圳市和丰软件技术有限公司【知名】

13544009511
我们做过什么

OSNet的另一个关键特性是轻量级

发布日期:2021-01-11 浏览次数:

轻量级的ReID模型有两个优点:(1)由于收集跨摄像头匹配的人图像的困难,ReID数据集通常是中等大小。因此,具有少量参数的轻量级网络不容易出现过拟合;(2)在大规模的监控应用中(例如全市范围内使用数千个摄像头的监控),re-ID最实用的方式是在摄像头端进行特征提取,将提取的特征发送到中央服务器,而不是原始视频。对于设备上的处理,小型的re-ID网络显然是首选。为此,在我们的构建块中,我们将标准卷积分解为点卷积和深度卷积,使OSNet不仅在特征学习上有区别,而且在实现和部署上也很高效。

 

解决第二个问题,是由不同re-ID数据集造成的差距,我们注意到这些差距通常反映在不同的图像样式,如亮度、颜色温度和角度(参见图1)。这些风格差异是由不同的照明条件和相机/设置在不同的摄像机网络特征。现有的工作使用无监督域适应(UDA)方法解决了这个问题。这些需要未标记的目标域数据来进行模型调整。

 

相反,我们将其视为一个更一般的域泛化问题,而不使用任何目标域数据。通过消除给定新目标域的数据收集和模型更新的繁琐过程,使用我们的方法,可以对任何未知的目标数据集开箱即用地应用使用源数据集训练的re-ID模型。

 

OSNet是通过将提出的轻量级瓶颈(OS块)逐层堆叠来构建的。详细的网络架构如图3所示。与标准卷积相同的网络架构有690万个参数和33849万个多添加操作,比精简3×3卷积层设计的OSNet大3倍。图3中的标准OSNet在实践中可以很容易地伸缩,以平衡模型大小、计算成本和性能。为此,我们在之后使用了一个宽度倍增器4和一个图像分辨率增器。

 

640?wx_fmt=png

图3

 

实验

 

简单说一下实验,对当前七个广泛使用的re-ID数据集进行实验,包括Market1501 , CUHK03 , DukeMTMC-reID (Duke) , MSMT17 , VIPeR , GRID和CUHK01。前四个通常被认为是大型的ReID数据集,尽管它们的大小相当适中(对于最大的数据集MSMT17,大约有30k的训练图像)。其余三个数据集通常太小,如果没有适当的训练前,就无法训练深度模型。

 

对于CUHK03,我们使用767/700 split来检测图像。对于VIPeR、GRID和CUHK01,我们遵循,对大型的re-ID数据集进行模型预训练,然后对目标数据集进行微调,平均结果为10个随机分割。对于re-ID评价指标,我们使用累积匹配特征(CMC)秩精度和平均精度(mAP),其中结果以百分比报告。

 

本文在同区域行人再识别和跨区域行人在识别问题上分别与当前SOTA的方法进行了比较。

 

640?wx_fmt=png

 

从上图可以看出在VIPeR上,可以观察到OSNet的性能显著优于所有其他选择(超过11%)。GRID比VIPeR更具挑战性,因为除了额外的干扰物之外,它只有250张125个身份的训练图像。在CUHK01上,有大约1900张训练图像,OSNet的表现明显优于主轴和JLML,分别为6.7%和16.8%。总体而言,OSNet在这些小数据集上的性能是优越的,这表明它在没有大规模训练数据的实际应用中有很大的优势。

 

总结

 

在本文中,我们提出了一种轻量级的CNN架构OSNet,它能够学习人的全方位特征表示。与现有的ReID CNNs相比,OSNet具有在每个构建块内显式学习多尺度特征的独特能力,其中统一聚合门动态融合多尺度特征生成全尺度特征。

 

为了改进跨域的泛化,我们通过可微架构搜索为OSNet配备了实例规范化,从而产生了一种称为OSNet- ain的域自适应变体。在相同域的re-ID设置中,结果显示OSNet在比基于resnet的竞争对手小得多的同时,还能达到最先进的性能。

 

在跨域的ReID设置中,OSNet-AIN在不可见的目标数据集上表现出了非凡的泛化能力,甚至在没有对目标域数据进行每域模型自适应的情况下,也击败了最新的UDA方法。

粤公网安备 44030502004911号