不需监督的摘要总结_工作流管理_工作流软件_深圳市和丰软件技术有限公司【知名】

13544009511
我们做过什么

不需监督的摘要总结

发布日期:2021-01-10 浏览次数:

NLP文献中的摘要有两种类型:提取-从文档中获取少量句子作为摘要的代名词,抽象-用NLG模型像人类一样生成摘要。T-NLG的目标不是复制现有内容,而是为各种文本文档(如电子邮件,博客文章,Word文档,Excel工作表和PowerPoint演示文稿)编写类似于人类的抽象摘要。这其中主要的挑战之一是在所有这些情况下都缺乏监督训练数据:因为人类并不总是会明确地总结每种文档类型。T-NLG的强大功能在于,它已经非常了解文本,因此无需太多的监督即可胜过我们之前使用的所有技术。

 

为了使T-NLG尽可能通用,以汇总不同类型的文本,我们在几乎所有公开可用的汇总数据集中以多任务方式微调了T-NLG模型,总计约有400万个训练样本。我们给出了ROUGE分数,以便与另一种最新的基于Transformer的语言模型(称为PEGASUS)和以前的最新模型进行比较。

以多任务方式训练T-NLG,同时使用所有数据集对其进行训练。众所周知,由于ROUGE评估在汇总任务方面存在缺陷,因此我们在下面提供了一些公开可用文章的输出摘要,以供比较。

T-NLG未来的应用

 

T-NLG在自然语言生成方面已经取得了优势,为微软和我们的客户提供了新的机会。除了通过汇总文档和电子邮件来节省用户时间之外,T-NLG还可以通过为作者提供写作帮助并回答读者可能对文档提出的问题来增强MicrosoftOffice套件的体验。此外,它为更流畅的聊天机器人和数字助理铺平了道路,因为自然语言生成可以通过与客户交谈来帮助企业进行客户关系管理和销售。

粤公网安备 44030502004911号